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INTRODUCTION

Designers of color displays have no simple means to

relate suprathreshold color contrast to performance because

few of the requisite experiments have been conducted. One

of the obstacles has been the absence of a standardized and

uniform method for representing color differences. The work

which has been performed under the present research contract

has addressed this problem by exploring the utility of

metrics which represent color differences as distances

between colors in a perceptually uniform color space

The initial research in this series compared the

1976 CIE L*u*v*, 1976 CIE L*a*b*, and Cohen and Friden's

(1975) Wab theoretically uniform color spaces and produced

equations for transforming distance (AE) within each space

into equivalent achromatic contrast. The experimental

method consisted of having subjects represent their

perceptions of suprathreshold color contrasts in terms of

achromatic luminance contrasts. In an early experiment,

subjects adjusted the luminances of seven colors until their

brightnesses matched those of 35, 50, and 70-cd/m,2

achromatic standards. This produced a set of 21 standard

colors which were used in the subsequent two experiments.

In the next experiment, the colors were presented in

* •brightness-matched pairs and subjects adjusted an adjacent,

achromatic pair until its luminance contrast matched the

1
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color contrast of the chromatic pair. The subsequent

experiment was an expanded replication which involved

presenting all possible color pairings rather than only

brightness-matched pairs. See Costanza (1981) and Post,

Costanza, and Lippert (1982) for details of these

experiments.

The results showed that regression models of color

contrast accounted for 38% to 80% of the variation in the

group's mean achromatic settings. The predictive power of

all models was lessened in the second color contrast

experiment. Interestingly, though, the AE-type models did

not yield optimum results for the CIE spaces. Instead,

multiple regression equations which individually weighted

the distances along each axis provided notably larger values

of R2 . These results suggest that the magnitudes of

perceived color differences are represented uniformly in Wab

space but not in L*u*v* or L*a*b*, at least when they are

represented by achromatic contrast. This result is so

because the multiple regression model for Wab produced no

notable improvement in R over the AEwab model, whereas the

L*u*v* and L*a*b* models did show such an improvement.

Thus, Wab provided a more uniform model than did the 1976

CIE spaces, but modifying the CIE spaces produced superior

predictive power.
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During the second phase of the research, emphasis

shifted from the perception of color differences to the

effects of such differences on human visual task

performance. Lippert (1983) performed a study to evaluate

the effects of color contrast on accuracy and response speed

for reading dot matrix numerals. A head-up display (HUD)

was simulated by superimposing a simplified vertical

situation display on a static computer-generated background

and manipulating color contrast for the HUD's numerals vs.

the background. (See Figure 1 for an illustration of the

AN display.) The colors' tristimulus values were known and,

therefore, it was possible to specify color contrast in

terms of AE in the various uniform color spaces. The

result. of this research were presented by Lippert, Farley,

Post, and Snyder (1983) and are contained in more detail in

reports by Lippert (1983) and Lippert and Snyder (1986).

Purpose of Research

The study by Lippert (1983) involved the presentation

N of numerals on large, uniform backgrounds with multicolored

surrounds. For many applications, this is a satisfactory

model of the viewing conditions. In particular, the results

should be applicable to the design of color displays for

interactive computer terminals and for computer-generated

imagery simulations. However, in some applications, the

images are more complex, involving spatially non-uniform,

s 3



13 0 12.3 140

0700- 20115

1234 - 12345

0600 L19115

Figure 1. Display configuration for Lippert (1983),
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imulticolored backgrounds, and may consist of a mixture of

computer-generated and real-world imagery.

Head-up displays are a particularly interesting

example of this sort of design problem because they combine

computer-generated symbology, which the designer can

control, with dynamic real-world imagery over which the

designer has very little control. In a typical HLD,

computer-generated graphics and alphanumerics are projected

from an electronic display and collimated. Collimation

causes the rays of light from the display to become parallel

and, thus, the eye can focus them only by focusing at

optical infinity. The illumination is reflected into the

qI viewer's eyes by a combining plate which also transmits

illumination from the outside world. Thus, a viewer who is

focused at infinity sees an image of the outside world with

4 the computer-generated imagery "watercolored" upon it. The

reader has probably seen similar images when looking through

windows at night.

Typically, HUDs are used in military aircraft to

permit the pilot to see critical flight information without

having to look away from the windshield. (Hence, the name

"head-up display".) This is particularly advantageous

during various phases of landing, weapons delivery, and

combat maneuvering and contributes significantly to both the

pilot's safety and the probability of completing the mission

5



requirements. In the near future, it is likely that HUDs

will also be used in commercial aircraft and, possibly,

automobiles.

It can be seen that a HUD provides a convenient

context for studying complex images containing

suprathreshold color contrast. The remainder of this

document describes an experiment which used a simulated HUD

and real-world imagery for this purpose. The goal was to

test and extend the generalizability of Lippert's (1983)

research by addressing the problem of specifying color

contrast for spatially complex multicolored images and

relating it to human performance. Models were developed to

predict response speed for reading dot matrix numerals

superimposed upon photographic backgrounds as a function of

color contrast. Comparisons of che results for differing

models have implications regarding the geometry and utility

of several uniform color spaces and regarding the role of

spatial relationships among colors in determining effective

color contrast. Such models would provide useful

informatiop. to designers of color displays and contribute

significantly to the modelling of color perception.

1-4
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METHOD

Experimental-Design

Eight subjects viewed a color CRT which displayed

digitized color photographs and a superimposed HUD. The

color contrast between the HUD and the background was

-controlled and the subjects performed a task which required

reading dot matrix numerals from the HUD. The numerals

which were read appeared only in two designated task areas

and only one area was read for any given trial. The design

was completely within-subjects with four replications per

subject, five HUD colors, and 20 backgrounds. Figure 2

illustrates one replication for a given subject. During the

course of the experiment, 6400 trials (8 subjects x 4

replications x 2 task areas x 5 HUD colors x 20 backgrounds)

were administered. This design yielded 6400 readings and

6400 associated response times (RTs). Afterwards, the data

- were transferred to the University's IBM 370 for analysis

via a standard statistical package.

Subjects

Eight student volunteers (five females) were paid $50

each for participating in the experiment, Seven of the

subjects had participated in the previous experiment by

Lippert (1983). The use of these subjects seemed

advantageous because their experience with a very similar

task probably increased the stability of their responses.

7
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All subjects were screened for normal color vision using the

Dvorine Pseudo-Isochromatic Color Plates. The rejection

criterion was two misses. The subjects were also tested for

20/20 uncorrected near visual activity using a Bausch and

Lomb Orthorater.

* Apparatus

Display system. An Aydin Model 8025 19-inch diagonal

high-resolution color monitor served as the display. It

employs a three-gun (red, green, and blue) Mitsubishi shadow

mask CRT incorporating P22 phosphors and a .29 mm triad

pitch, i.e., the separation between phosphor triads is .29

mm. The raster is 2:1 positively interlaced and paints a

complete image once every 1/30 s. The aspect ratio was

adjusted to 1:1, yielding a (26 cm)2 -live display area.

The subjects were seated with their eyes approximately 48 cm

from the screen. Thus, the display's active area subtended

approximately 30 degrees x 30 degrees visually.

The monitor was driven by an International Imaging

Systems (IIS) Model 70 digital image processor. This device

operated under the control of a Digital Equipment

Corporation PDP-11/55 minicomputer and provided 5122 picture

elements ("pixels") at the CRT screen. For a viewing

distance of 48 cm, this yielded a limiting spatial

resolution of approximately 8.5 cycles/degree. The IIS

command voltage for each gun is adjustable through 1024

9



discrete steps, permitting 10243 unique sets of tristimulus

values to be generated and specified separately for each

pixel.

In order to know the tristimulus values associated

with a given triplet of command voltages (or "bit

settings"), it is necessary to perform radiometric

measurement of the monitor's response characteristics.

Characterization is accomplished by measuring separately

each gun's spectral radiance distribution at 32 bit settings

and computing the associated tristimulus values. Responses

at intermediate settings are then predicted via linear

interpolation. Note that tristimulus values are additive

and that the guns operate independently. Thus, the

tristimulus values associated with any combination of bit

settings can be predicted from measurements of each gun by

itself. Past experience has indicated that characterization

remains valid within one just-noticable-difference (JND,

i.e., +/- .005 unit for the CIE chromaticity coordinates and

+/- 2% for luminance) for approximately two weeks.

The radiometric measurement system consists of

several pieces of equipment manufactured by Gamma

Scientific, Inc. To measure a light source, some of its

emission is collected by a fibre-optics cable and fed to a

monochrometer. The monochrometer samples the spectral

radiance distribution from 380 to 760 nm in 1-nm increments

10



under the control of the minicomputer. These narrow

bandwidth samples are converted to voltages and ampl.ified by

a photomultiplier tube, which is connected to the

minicomputer via an analog-to-digital converter. The

computer records the samples and computes tristimulus

values.

The radiometric measurement system is calibrated by

scanning a standard light source whose spectral radiance

distribution is known. This distribution is rezcorded in a

comp'uter file and compared with measurements from

calibration scans. Any differences between predicted vs.

measured values are assumed to be due to error in the

measurement system. The comparison yields a correction

factor for each 1-nm increment. When a source (e.g., the

monitor) having an unknown spectral distribution is scanned,

the correction factors are used to produce a set of

calibrated radiometric measures.

Head-Up display. The HUD was generated by drawing

lines in a portion of the IIS known as the graphics plane.

The lines appeared to be continuous but consisted actually

of pixel-vectors whose elements were assigned appropriate

bit settings. Any pixel in graphics can override pixels at

the same x-y coordinates in any other portion of the IIS.

This option was used so that the FIJD pixels would mask

"Adý corresponding pixels in the background image, rather than

-11



adding to them. Thus, the HUD's tristimulus values were

independent of the background's.

Figure 3 illustrates the appearance of the HUD for a

hypothetical trial. The task stimuli consisted of 7 x 9

dot matrix Huddleston font numerals. All digits were

changed randomly for each trial. However, experimental

tasks were associated only with the centermost digits on the

ver-tical scales. Hereafter, these areas of the MOD will be

-referred to as field. 1 and 2, respectively. Field 1 always

contained four digits while field 2 always contained five

digits. For any given trial, the subject responded to only

one of the fields. Note that fields 1 and 2 were in

"mirrored" positions. Thus, for any given background image,

virtually identical color contrast could be produced for

either field by reversing the image left to right.

Five HUD digit colors were selected for use in the

experiment. The actual chromaticity coordinates and

luin-inances for the colors, averaged over several sets of

measurements, are shown in Appendix 1. (As a reference aid,

all measurements, etc. pertaining to the experimental

stimuli are contained in Appendices 1 - 6.) The first three

sets of chromaticity coordinates are very similar to those

which were used by Lippert (1983). They were selected

because they are representative of those which can be

achieved using e~xfsting or proposed HUD technology. The

12
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Figure 3. Display configuration for hypothetical trial.
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green and blue HUDs were added to increase the number of

possible color combinations. The red, green, and blue HUDs

were produced using only one of the monitor's guns (i.e.,

red, green, or blue, respectively) while the achromatic and

yellow-green HUDs were generated via appropriate mixtures of

the three guns. The average measured luminance for the HUDs

was approximately 40 cd/m 2 .

Interstimulus display. An achromatic interstimulus

display (ISD), consisting of a (2 pixel) 2 checkerboard

grating, was used to maintain the subjects' adaptations to

photopic levels of illumination and to provide interference

with possible afterimages. The ISD was generated by

alternately assigning either black or white bit settings to

groups of graphics pixels. The ISD's spatial luminance

modulation (i.e., (Lmax - Lmin) / (Lmax + Lmin), where Lmax =

the maximum luminance) was unity because Lmin was zero. The

space-weighted average luminance (i.e., (Lmax + Lmin) / 2)

was constant for all trials to avoid confounding the effects

of color contrast with variations in the subjects' state of

luminance adaptation. The actual luminance level was not

particularly critical but was approximately the average of

all the HUD/background combinations (HUDBACKs) so as to

minimize the likelihood that the sudden changeovers would

produce visual discomfort. The ISD's white pixels had

approximately the same chromaticity coordinates as the

achromatic HUD's.

14



The IIS design made it possible for the HUD and ISD

to coexist in graphics while remaining available for

individual display. Thus, it was not necessary to draw

these entities each time they were to be presented. (It was

necessary, however, to draw new stimuli in the HUD while the

W ISD was on. This process required approximately 1 s.)

Instead, either could be selected via a single command. The

time requirement for initiating a changeover was negligible

and, thus, the total time requirement was determined by the

monitor's refresh rate. This means that changeover required

1/30 s.

The same spatial characteristics of the ISD which

masked afterimages also raised thresholds for subsequent

stimuli. Thus, the effects of color contrast may have been

attenuated somewhat. However, this poses no special problem

because any viewing situation imposes a state of spatial

adaptation which can be expected to influence color

perception. Nunn (1977), for example, has shown that

adaptation to monochromatic gratings has influences on

subsequent color matching behavior which are related to the

4 gratings' spatial frequencies. Thus, the nature of the

ISD's effects on the perception of subsequent stimuli should

not have been especially important because its spatial

frequency was constant.

15



Background images. Ten color photographs were

selected from a large pool to provide the backgrounds for

the experiment. They were chosen on the basis of a

subjective evaluation of their color content in the

vicinities of the HUD's digits, the objective being to

obtain as wide a range of color combinations as possible.

By reversing each image left to right, it was possible to

use both sides as the background for either task field.

Thus, the 10 photographs provided 20 backgrounds which, when

combined with the five HUD colors, provided 100 unique color

combinations for presentation to the subjects. A brief

description of each image is contained in Appendix 2.

Photographs 6 - 8 came from an archive of digital

imagery which had been provided to the laboratory several

years before by the University of Southern California. The

remaining photographs were privately-owned color slides

which were digitized using a Nytone Model TSC-1 flying spot

scanner, the IIS, and the minicomputer. The digitization

process consisted of translating spectral distributions at

various points in the slides to bit settings for each CRT

gun. This produced a set of 5122 bit-setting triplets,

i.e., 5122 pixels, for each photograph. The tristimulus

values for any of these pixels could be computed afterwards,

given the monitor's characterization. Due to the monitor's

1:1 aspect ratio, the images were compressed somewhat in the

16



horizontal dimension. However, this was not especially

important, or even evident, given the nature of the

experiment.

K The images were stored on a magnetic disk and loaded

into the IIS at runtime by the minicomputer, as needed.

This permitted the computer to have positive control over

their presentation. Each image was loaded while the ISD was

on. This process required approximately 5 s.

Presentation of the HUDBACKs to subjects was

synchronized with the monitor's raster so that they were

always painted starting at the uppermost, leftmost pixel,

Changeover to the ISD, however, was not synchronized and

started immediately after the subject indicated completion

of viewing. Thus, erasure of the HUDBACKs was initiated at

random locations on the monitor's screen and required 1/30s.

Synchronization required a variable amount of time

because it could not always be achieved on the computer's

first attempt and sometimes required several attempts. As a

M result, there was a variable lag between the moment at which

the subject indicated readiness for vieving and the moment

at which painting of the next HUDBACK initiated. This

variability was probably beneficial to the experiment

because pretesting indicated that there was a tencency for

subjects to develop an open-loop "HUDBACK-off" response

1714
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which was synchronized with the preceding "HUDBACK-on"

response. The variable lag tended to discourage this

behavior. During the experiment, the lag was usually very

brief but occasionally lasted as long as 5 s.

Task

The task for both fields was to report all digits,

including any leading zeroes which were present. The digits

were selected randomly from a uniform distribution ranging

from 0000 to 9999 in the case of field 1, and ranging from

00000 to 99999 in the case of field 2. The subjects were

instructed to minimize their RTs while maintaining complete

reading accuracy. This instruction was designed to fix the

subjects' speed/accuracy tradeoffs in the maximally

conservative mode, thereby reducing unexplained variability

within subjects and, possibly, simplifying the subsequent

analyses by forcing all of the task-induced variability into

their RTs. The subjects were also instructed to focus their

eyes in the vicinity of the upcoming task field before

triggering each trial. This instruction was intended to

eliminate variability within subjects associated with visual

search times.

Responses. The subjects were interfaced with the

minicomputer via a solid-state microswitch which was

equipped with a power supply and connected to the analog-to-

digital converter. When the switch closed, the computer

18



started a trial by initiating changeover to the next HUDBACK

and starting a clock. When the switch opened, the computer

terminated the trial by stopping the clock and initiating

changeover to the ISD. The clock ran at 1 KHz, thereby

providing 1-ms resolution for measurement of the subjects'

RTs.

ON After each trial, the subject reported the contents

of the appropriate task field to the experimenter, who

M relayed this information to the computer via its console.

The computer recorded the RT and response in a file and set

Sup for the next trial. The RT was corrected so as to

account for the delay between the time at which the clock

was started and the time at which the first stimulus pixel

was painted. After setup was complete, the computer

reported the task field for the upcoming trial to the

- experimenter, who relayed this to the subject. The computer

waited for the experimenter to signal readiness to begin and

then verified that the switch was open before rendering it

operative for initiating the trial.

Postural control. A padded forehead rest was used

to control the subjects' viewing distance and level relative

to the CRT screen. The chair was a padded secretarial type

and its height was adjusted for each subject so that the

forehead rest was in a comfortable position. Also, the

backrest was adjusted to provide proper support. The wheels

19



were removed from the chair to prevent it from creeping.

The subjects were permitted to pause, stand, stretch, etc.,

as needed between trials.

The response switch was mounted on a mobile base

which rested on a tabletop in front of the monitor. The

base consisted of a Dan Wesson combat pistol grip, mounted

horizontally on a plywood board which was .635 cm thick.

The grip had grooves for the fingers to assure a consistent

hand-position and was suitable for left- or right-handed

subjects. The subjects used their dominant hand at all

times. These precautions were intended to help to stabilize

RT. The switch was countersunk into the grip and was

positioned for index-finger triggering. The board was large

enough to permit the entire hand to rest upon it. This,

combined with the board's thinness and the grip's angle,

seemvd to provide optimum comfort. Note also that this

design permitted the subjects to choose from and change

among a wide variety of arm-positions while providing I-All

postural support.

Procedure

Scheduling. The subjects were screened for vision and

signed an informed consent form before reporting for the

first experimental session. Each subject performed one

session daily for five consecutive days. Each session

constituted one complete replication and required an average

20



of 45 minutes.

Sessions. For each session, the subjects viewed the

ISD for one minute before starting the task, to stabilize

their visual adaptation. Each session consisted of 200

trials in which each HUD color was presented with each of

the backgrounds for both task fields. All trials for a

given HUD color were performed sequentially. The order of

presentation for the HUD colors and task fields was

.M •randomized within each session. The order of presentation

for the backgrounds was randomized within each HUD color.

The first session was a practice session only. Its

U• purpose was to familiarize the subjects with the task and

stabilize their behavior. Therefore, the resulting data

were not analysed. However, the subjects were not informed

of this lest they take the session less seriously and

thereby defeat its purpose. The practice session started by

having the subjects read an instruction sheet followed by a

5- brief question and answer period and a preview of the

background images. Pretesting without the preview had shown

that subjects were unable to describe the contents of any of

U• the images after an experimental sequence and were

understandably curious about them. Thus, the initial

Ell preview reduced the probability that subjects would extend

their RTs in order to examine the images. At the end of the

final session, each subject was paid and debriefed.
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RESULTS

Preliminary Checks

A histogram was plotted which showed the residuals

produced by subtracting the appropriate N x HUD color x

background mean (where N is the number of digits presented)

from each of the 6400 RTs. It contained a pronounced

positive skew, as is typical for RT data. Therefore, the

data were transformed by taking their inverses. This

improved the distribution's symmetry and yielded a dependent

measure which can be conceptualized as response speed (RS).

The units for RS were, thus, responses/ms.

The proportion of correct responses (PC) was

computed by totalling the number of correct responses within

each cell for each subject across the four sessions and

dividing by four. This yielded 1600 discrete random

variables, capable of taking on five different values. A

histogram was plotted and contained an extreme negative

skew. Approximately 90% of the proportions were 1, 8% were

.75, 1.5% were .5, .498% were .25, and the remaining .002%

were 0. The grand mean was .963 correct responses. These

findings made it clear that PC was insensitive and that the

subjects had been successful in following their

speed/accuracy instructions. Therefore, no further analysis

of PC was attempted.
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Anali-ysis of Variance

To verify the presence of significant color-related

effects, a four-way, fixed-effects, full-factorial, within-

subjects analysis of variance (ANOVA) was performed on the

6400 RS observations. The main effects for this analysis

were replications, N, HUD color, and background. The

results are shown in Table 1. All effects other than

Sinteractions involving replications were significant, p <

VN .02 in all cases, and accounted for a total of 46.12% of the

sample variation.

Post-hoc comparisons were performed for the main

effects using a two-step procedure. Non-significant

comparisons were identified via the minimally-conservative

LSD test. Significant comparisons were identified via the

maximally-conservative Scheffe test. Comparisons whicb

showed significance for the LSD but failed for the Scheffe

were regarded as indeterminate. All comparisons were tested

using alpha = .05.

The mair effect of replications accounted for only

.42% of the sample variation, indicating that the subjects'

variability over time was relatively low. The means for

each session are plotted in Figure 4. Examination of Figure

4 suggests that RS increased gradually at first and then

stabilized during the last two sessions. The LSD showed no

significant differences between sessions 1 vs. 2, 2 vs. 4,
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Table 1. Analysis of Variance Summary Table

Source df MS F p

SBetween Subjects (S) 7 .00015873

Within Subjects

Replications (R) 3 .00000460 4.30 = .0164

R x S 21 .00000107

Number of digits (N) 1 .00012063 94.82 < .0001

N x S 7 .00000127

HUD color (H) 4 .00004917 27.83 < .0001

H x S 28 .00000177

Background (B) 19 .00003997 54.02 < .0001

B x S 133 .00000074

R x N 3 .00000015 1.44 = .2583

R x N x S 21 .00000010

R x H 12 .00000024 .85 = .6044

R x H x S 84 .00000028

R x B 57 .00000008 1.12 = .2729

R x B x S 399 .00000007

N x H 4 .00000124 = .0004

N x H x S 28 .00000017

N x B 19 .00000065 9.91 < .0001

N x B x S 133 .00000007
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Table 1 (continued)

H x B 76 .00000493 28.47 < .0001

H x B x S 532 .00000017

R x N x H 12 .00000008 1.31 .2267

SR x N x H x S 84 .00000006

R x N x B 57 .00000006 .88 = .7130

R x N x B x S 399 .00000006

TiR x H x B 228 .00000007 1.07 = .2262

R x H x B x S 1596 .00000006

N x H x B 76 .00000024 3.31 < .0001

N x H x B x S 532 .00000007

R x N x H x B 228 .00000006 .92 = .7867

R RxNxHxBxS 1596 .00000006

JI:

S
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UI or 3 vs. 4, while the Scheffe showed session 1 < 3. Thus,

there appears to have been a significant improvement in RS

over time. The absence of significant interactions

involving replications indicates that this improvement was

distributed evenly throughout the experimental conditions.

The main effect of N accounted for 3.71% of the

sample variation. The mean RSs for the four- and five-digit

tasks were .001441 and .001297, respectively.

B The main effects of HUD color and background and the

HUD color x background interaction accounted for 6.04%,

23.340% and 11.51%, respectively, of the sample variation.

Thus, color and color contrast effects accounted for 88.7%

of the variation attributable to significant effects. The

0 RS means for each HUD color are charted in Figure 5. The

LSD showed no significant differences between achromatic vs.

yellow-green and yellow-green vs. green. The Scheffe showed

that RS for the red and blue HUDs was significantly greater

than for the other three. The main effect of background was

broken into seven nonsignificantly-different groupings by

the LSD and into five groupings by the Scheffe, showing that

many of the backgrounds did not produce statistically unique

effects. The HUD color x background interaction is not

readily interpretable because it represents color contrast

effects. These are analysed subsequently "'ia regression

techniques.
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K 1  Although the N x HUD color, N x background, and N x

HUD color x background interactions accounted for only .15%,

O .38%, and .56% of the sample variation, respectively, their

statistical significance is instructive. The N x HUD color

1 interaction indicates that there was a difference between

the left and right sides of the monitor which varied with

HUD color. This probably reflects a minor nonuniformity in

convergence. The N x background interaction indicates that

the effect of the background varied with the number of

digits displayed. This can be taken as evidence that unique

contrasts which significantly affected RS occurred for the

fifth digit. The N x HUD color x background interaction

probably represents the mediating effect of HUD color on the

preceding interaction, although other interpretations are

possible.

Perhaps the most interesting ANOVA results are those

concerning the effect of HUD color on RS. The

* recommendations of Rizy (1967) and Meister and Sullivan

(1969) lead one to expect a significant difference between

the red vs. blue HUDs and little difference between blue vs.

green. The present findings contradict these expectations.

Clearly, recommendations which are intended to apply to

achromatic backgrounds did not generalize to a case

involving colored backgrounds. Instead, the ordering of the

HUD colors as a function of decreasing RS is very similar to
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that which was obtained as a function of increasing visual

search time in an experiment by Bloomfield (1979), using

colored targets and backgrounds. To the extent that- the

present experiment provided color contrasts which are

representative of those encountered with airborne HUDs, the

present findings regarding the merits of specific HMUD

chromaticities may be generalized to the applied setting.

Thus, more highly saturated colors yield better performance

against a variety of real-world background colors and

textures.

Regressions

Although the ANOVA produced some useful information, it

did not provide a convenient means for developing metrics

which would relate the HUDBACKs' colors to the subjects'

performance. The main purpose of the present experiment was

to explore the utility of metrics which are based upon

distance in the L*u*v*, L*a*b*, and Wab color spaces. Since

the color space distance is a continuous variable, this was

best approached via regression techniques.

All of the regression analyses model the HUDBACKs'

pixels as points within the various color spaces and relate

the distances among these points to the subjects' RS.

Because of the multicolored nature of the backgrounds, the

representation of any particilar HUDBACK within a given

color space consists of a single point depicting the HUD
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color and a cluster of points depicting the background

pixels' colors. It would not have been practical to model

the color contrast between a given HUD and background using

the distances between the HUD and each point in the

background cluster. This would have yielded a regression

equation containing chousands of parameters, none of which,

taken individually, would be expected to have any predictive

utility. Furthermore, many of these dista.'es would have

pertained to background pixels which were physically distant

from the HUD's digits and, therefore, would have had little

or no predictive utility under any circumstances. Thus, the

first stage of the regression analysis sought to derive a

Ora;representative of the color-distances between the HUD and

background pixels which would use as few parameters as

possible and exclude superfluous background pixels. In

other words, a global representation of color contrast in

aM the immediate vicinity of the HUD's digits was desired.

Two-Degree Model of Color Contrast

The first approach to modelling global color contrast

"4 •involved averaging over all background pixels within a two-

degree radius (subtended visually) of each digit-set's

centermost point. Each of these pixels' 1931 CIE

tristimulus values were computed and transformed into each

of the uniform color spaces. The results were averaged and

the resulting sets of coordinates were taken to represent
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the "average" color of the background in each color space.

The color contrast between any given HUD and background was

then represented as AE between the HUD and the two-degree

average. As a consequence of the averaging procedure, this

representation of color contrast is independent of the

particular digits which appeared for any given trial. Thus,

color contrast was modelled as if it had been replicated for

each subject and session. The rationale for choosing a two-

degree radius was that the 1931 CIE standard colormetric

observer is recommended only for stimuli which subtend four

degrees visually or less.

Two-factor AE regressions. The data were averaged

over subjects and sessions and a series of two-factor

regressions was performed on the RS means. The predictors

in the equations were N and AE in each color space. A

regression using AE in 1931 CIE tristimulus space (Tri) was

included as a control. The results are shown in Table 2.

The regression coefficients for all parameters in

all models were significant, p < .01 in all cases. As

expected, increasing N was associated with decreasing RS

(this had already been demonstrated in the ANOVA) while AE

showed the opposite relationship. Interestingly, there were

,iý 2no practical differences among the R s for the various color

spaces, nor were any particularly impressive. Thus, the

uniform color spaces failed to distinguish themselves
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Table 2. Two-Degree Model of Color Contrast:

Two-Factor AE Regressions

Parameter Regression Coefficient p R2

E A Intercept 2.294190 x 10-3 < .01 .261

N -2.745800 x 10-4 < .01

AETri 6.835931 x 10- 6  < .01

Intercept 2.124860 x 10- < .01 .2•1

N -2.745800 x 10-4 < .01

AL*u*v* 5.778463 x 10-6 < .01

Intercept 2.082100 x 10-3 < .01 .284

N -2.745800 x 10 < .01

AEL**ab* 7.411417 x 10-6 < .01

-3SIntercept 2.231760 x 10 < .01 .292

SN -2 .745800 x 10-4 < .01

SAEwa 3.313904 x 10- < .01

I!
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significantly from the nonuniform space upon which they were

all intended to improve (i.e., Tri), although all

differences were in the expected direction.

Four-factor regressions. Previous experience (see

Costanza, 1981; Lippert, 1983; Post et al., 1982) suggested

that the R2s might be improved if the individual

contributions of distance along each axis of the three-space

were kept separate in the r-ression equations. This was

accomplished via four-factor second-order regressions, e.g.:

x 0 + xlAL*2 + X2 Au* 2 + x 3 AV* 2 = (RS - x4 N) 2  (1)

where x 0 is the intercept, x1 , x 2 , and x 3 are the regression

slopes for the squared distances along each of the L*u*v*

axes, and x 4 is the regression slope associated with N,

obtained via the two-factor AE regressions. Note that these

regressions caused each axis to undergo the optimum linear

rescaling for a Pythagorean representation of distance. Of

course, the resulting slope for each axis applies to squared

distance and, therefore, if one wishes to rescale the axes

before computing the squared distances, the appropriate

scaling factors are the square roots of the slopes.

To use Equation 1 for predictive purposes, the terms

would be rearranged as follows:

(x 0 + XlAL* 2 + x2Au* 2 + x3 v*2 ) 05 + x 4 = R S. (2)
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Equations of this form were used to compute the R2for the

four-factor models.

Movement of N to the right side of the regression

equations was necessary to obtain a solution using linear

regression methods. The procedure of estimating a slope and

PC •then using the estimate as a constant within another

V• regression is unusual but was permissible in this case

because N is orthogonal to all other parameters. Thus, the

estimate of its slope is independent of all other estimates

and vice versa. This is illustrated in Table 2, wherein N's

slope is invariant across color spaces. Similar techniques

are used sometimes to remove seasonal trends from time

:1 series data (see Cook and Campbell, 1979).

The results for the four-factor regressions are

shown in Table 3. None of the slopes for Tri's axes

differed significally from zero, p > .13 in all cases, and

each regression for the other three spaces contained one

axis whose slope was not significant, p > .09 in all cases.

Since the distances along the axes had been chosen randomly,

it seemed plausible that the nonsignificant slopes might

have resulted from covariance among the parameters.

Therefore, Pearson product-moment correlations were computed

among the squared distances along the axes for each color

space. The results, shown in Table 4, confirmed the

suspicions regarding covariance. The squared distances for

35



Table 3. Two-Degree Model of Color Contrast:

Four-Factor Regressions

Parameter Regression coefficient p R

Intercept 6.637153 x I0-06 < .01 .207

N -2.745800 x 10-04 < .01

(AX)2 2.231997 x 10-I0 = .13

(AY) 2  1.936699 x 10-I0 = .19

(AZ) 2  1.087973 X 10-10 = .43

Intercept 5.563464 x 10-06 < .01 .480

N -2.745800 x 10- 0 4  < .01

(AL*) 2  9.750373 x I0-10 < .01

(Au*) 2  1.173016 x 10-I0 < .01

(Av*) 2  2.073357 x 10-10 = .95

Intercept 5.350179 x 10-06 < .01 .496

N -2.745800 x 10-04 < .01

(,L*)2 1.001560 x 10-09 < .01

(Aa*) 2  2.774472 x I0-1 0  < .01

(Ab*)2 -5.399573 x 10-11 = .18

Intercept 6.078701 x 10-06 < .01 .265

N -2.745800 x 10- 0 4  < .01

(AW) 2  3.918890 x 10-09 < .01

(Aa) 2  4.255722 x 10- 0 9  = .09

(Ab) 2  1.388641 x 10- 0 8  < .01

36



I

all three of Tri's axes were highly correlated and all other

spaces produced one or more rs which differed appreciably

from zero. The differences among the color spaces for these

* correlations are especially interesting when one considers

that the spaces are all transformations of one another. Note

that the statistical significance of the correlations is

irrelevant. The fact that they are nonzero proves that the

squared distances used in the present experiment are not

independent of one another.

Comparisons of the R2 s for the two- vs. four-factor

0 models show that rescaling the axes caused the R2 s for

L*u'*v* and L*a*b* to increase while the R2 for Tri and Wab

declined (Tables 2 and 3). The significance of these

differences was tested using a procedure described by McNemar

(1955). This test showed that the differences for L*u*v*,

L*a*b*, and Tri were significant, p- < .01 in all cases, but

the comparison for Wab was not, p = .14. The reductions for

Wab and Tri make sense only if one assumes that they resulted

U from rounding and/or truncation in the computations.

It is clear that the four-factor models produced the

best results for L*u*v* and L*a*b*, indicating that a simple

linear rescaling of their axes significantly improves their

perceptual uniformity. As for Wab and Tri, the linear

rescaling had no benefits and, therefore, the

computationally-similar AE models emerged as optimum for
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Table 4. Corelations, Affong Squared Distances

Along the Color Spaces' Axes

Tri:

(AY) 2  (AZ) 2

(Ax) 2  .9802 .8593

(AY)2 .9117

L*u*v*:

(Au*) 2  (Av*) 2

(AL*) 2  - .1755 -. 1667

(Au*) 2  .5456

L*a*b*:

(Aa*) 2  (Ab*) 2

(AL*) 2  -. 2757 -. 1608

(Aa*) 2  .0348

Wab:

(Aa) 2  (Ab) 2

(AW) 2  .0290 .6223

(Aa)2 .2372
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these two spaces. With the exception of the results for

Tri, which had not been tested previously, these findings

are identical with those reported by Costanza (1981).

Comparisons among optimum models. Although a
subjective evaluation of the R2 s for the optimum models was

revealing, it was not certain whether the differences among

these statistics were significant. The procedure from

McNemar (1955) showed that the comparisons between L*u*v*

vs. L*a*b* and Wab vs. Tri were not, p > .17 in both cases,

while the comparisons of L*u*v* and L*a*b* vs. Wab and Tri

were significant, p < .01 in all cases. Thus, the L*u*v*

and L*a*b* spaces outperformed the basic 1931 CIE space when

their axes were rescaled but Wab did not under any

circumstances.

Comparisons with Lippert (1983). Given the

IN similarities betwen Lippert's (1983) study and the present

research, it seemed worthwhile to compare the results from

the two experiments. Lippert's (1983) data provide an

excellent means for evaluating the present results because

differences can be taken to reflect the effects of uniform

vs. nonuniform backgrounds. To facilitate the present and

following discussions, the results from two-factor AE and

>Jfour-factor regressions on Lippert's (1983) data are

summarized in Tables 5 and 6, respectively.
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Table 5. Two-Factor lE Regressions on Lippert'ýs

-(1983) Data

Parameter Regression coefficient p R2

Intercept 3.273270 x 10-3 < .01 .267

N -4.065800 x 10-4 < .01

AETi 6.332622 x 10- 6  < .01

Intercept 3.174630 x 10- < .01 .394

N -4.065800 x 10-4 < .0i

AELuv 3.333600 x 10-6 < .01

Intercept 3.155000 x 10-3 < .01 .350

N -4.065800 x 10 < .01

AELab 5.487360 x 10-6 < .0i

Intercept 3.014483 x 10-3 < .01 .425

N -4.065800 x 10-4 < .01

A Ewab 3.059915 x 10-5 < .01
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Table,6. Four-Factor AE Regressions on Lippert's

('983 Data

Parameter Regression coefficient p 2

Intercept 1.044046 x 10-05 < .01 .597

N -4.065800 x 1 < .01

(AX)2 9.935955 x 10-10 < .01

(AY) 2  8.645602 x 10-09 < .01

S(AZ) 2  1.081371 x 10-10 < .01

Intercept 1.032066 x 10-05 < .01 .656

N -4.065800 x 10- 0 4  < .01

(AL*)2 1.470673 x 10- < .01

(AU*) 2  8.624694 x 10-11 < .01

S(AV*) 2 4.182645 X 10-11 < .01

Intercept 1.003311 x 10-05 < .01 .619

N -4.065800 x 10-04 < .01
(AL*) 2 1.561245 x 10-08 < .01

(,&a*) 2 2.658661 x 10- 10 < .01

"ý (A*)2 1.811760 X 10-10 < .01

921Intercept 1.193174 x 10-05 < .01 .422

: N -4.065800 x 10-04 < .01
(AW) 2  1.510877 x 10-08 < .01

(Aa) 5.601355 x 10-09 < .01

(&b)2 -1.096674 x 10-09 = .67
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For Lippert's (1983) data, the four-factor models

were best for Tri, L*u*v*, and L*a*b* while the two-factor

AE model was best for Wab. Comparisons among the R 2s for

the four-factor models showed that Wab's R2 was

significantly lower than all others, 2 < .01 in all cases,

L*u*v*'s R was significantly greater than all others, 2 <

.01 in all cases, and the R2s for Tri vs. L*a*b* did not

differ significantly, p = .15. Thus, a linear rescaling of

the 1931 CIE space produced results which were notably

better than Wab's and indistinguishable from L*a*b*'s.

To assist the comparison of the two experiments, the

optimum models obtained from analysis of Lippert's (1983)

data were used to predict the results from the present

study. The R2s were then compared with those from the

present study's optimum models. The procedure from McNemar

(1955) showed that the s from L*u*vk, L*a*b*, and Tri were

significantly lower using Lippert's (1983) coefficients, 2 <

.01 in all cases, but the comparison from Wab was not

significant, 2 = .15. These results are summarized in Table

7.

Next, the present study's optimum models were used

2to predict Lippert's (1983) RS means. The resulting R s were

significantly lower, 2 < .05 in all cases, although the

actual magnitude of the difference for Wab is trivial.

U These results are summarized in Table 8. All of the tests
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Table 7. Two-Degree Model of Color Contrast vs. Lippert (1983)

Models: Predicting Present Study's Results

2 2Color space L model R P model R p

Tri 4F .167 2F-AE .261 < .01

L*u*v* 4F .379 4F .480 < .01

L*a*b* 4F .382 4F .496 < .01

Wab 2F-AE .277 2F-AE .292 .15

L = Lippert (1983)

P = Present study

4F = Four-factor

2F-AE = Two-Factor AE

S.

N
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were performed one-tailed because, for a given color space,

it would have been mathematically impossible for the R2

produced using one experiment's optimum model to predict

that experiment's results to be exceeded by the R2s produced

using the other experiment'-s optimum models.

It is clear that Wab fared well in the cross-

experimental comparisons. For the other spaces, though, the

attempts to predict across experiments produced substantial

decrements in R This suggests that differences in the

uniformity of the backgrounds used in the two experiments

exerted an important influence on the spaces' coefficients,

although the results can also be attributed to subject and

color-related differences. More importantly, though, the

cross experimental findings show that neither experiment's

models of color contrast adequately predicted the other's

results. Even though the differences for Wab were slight

and/or nonsignificant, the resulting R2s did not compare
favorably with those produced by the optimum models within

each experiment.

Outline Model of Color Contrast

The results for the two-degree model were encouraging

but comparison of the R2 s with those from Lippert (1983)

suggested that a more sophisticated model of the background

colors might yield worthwhile improvements. The average R2

fcr the optimum models in Tables 5 and 6 is .574 whereas the
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Table 8. Two-Degree Model of Color Contrast vs. Lippert (1983)

Models: Predicting Lippert's (1983) Results

Color space L model R2  P model R2 p

Tri 4F .597 2F-AE .253 < .01

L*u*v* 4F .656 4F .397 < .01

L ab* 4F .619 4F .295 < .01

Wab 2F-AE .425 2F-tiE .406 = .05

1Ni L = Lippert (1983)

p P = Present study

4U = Four-factor

S2F-AE = Two-factor AE

4 454 .



average for the optimum models in Tables 2 and 3 is .382.

Since Lippert's (1983) backgrounds were spatially uniform,

one might, therefore, expect that an appropriate model of

the present study's backgrounds would yield an average

improvement in R2 of approximately .192, the difference

between .574 and .382.

An attempt was made to refine the two-degree model

by restricting consideration to background pixels which were

immediately adjacent to, or outlined, the digits' pixels.

For each of the 6400 observations, the average color

coordinates for the outline pixels were computed in each

color space for each task-related digit. This permitted the

representation of the unique color contrast between each

digit and its immediate background for every trial. This

approach seemed to offer greater precision than the two-

degree model because it considered only those background

pixels which might be expected to have the greatest impact

on perceived color contrast for the digits and because it

represented the unique color contrast resulting from

superimposing a particular digit on a given background.

Thus, unlike the two-degree model, the outline model treated

each trial as if it involved the presentation of a unique

color contrast.

A9 regressions. The first use of the outline model

related AE in each color space directly to the subjectz' RS.
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First, the color contrasts were averaged across digits for

each trial and the averages and N were regressed on the 6400

observations using two-factor AE models. Next, four-and

five-factor AE regressions were performed for the four- and

five-digit task fields, respectively, in which AE for each

digit was represented separately.

For both sets of regressions, the RS data were

pseudo-normalized prior to analysis. For the two-factor AE

Fri models, each subject's mean RS was subtracted from that

8 subject's cbservations. This eliminated basic differences

WS among subjects, which the regression equations did not

account for. For the four- and five-factor AE regressions,

each subject's mean RS for each task-field was subtracted

because these equations could not include N as a predictor.

Thus, for both sets of regressions, the dependent measure

became ARS.

Number of discriminable outline pixels. The second

use of the outline model represented the color contrast for

each digit as a function of the number of outline pixels

whose color differed by at least one JND from the digit's.

In the case of the L*u*v* and L*a*b* spaces, a distance of
1.0 is intended to be equivalent to one JND. For Wab space,

there is no known relationship between distance and JNDs, so

a distance of 1.0 was selected arbitrarily to represent one

JND. For 1931 CIE tristimulus space, JNDs are known to vary
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in size and shape but a size of 1.0 was assumed again for

the sake of comparison.

For a given color space, a discriminable outline

pixel was defined as one whose color lay one unit or more

from the digit's color. Two sets of regression analyses,

similar to those for the AE models mentioned above, were

_performed using the number of discriminable outline pixels

(NDOP) in each color space as a predictor. The first set

averaged NDOP across digits for each trial and used the

averages and N as predictors in two-factor regressions for

each color space. The second set consisted of four- and

five-factor regressions on the four- and five-digit task-

fields, respectively, in which NDOP for each digit was

represented separately.

Proportion of discriminable outline pixels. The

third modelling approach took into consideration the

differences between digits in the number of outline pixels

which they possessed. Presumably, the effect of a non-

discriminable outline pixel is diminished for digits which

possess a greater number of outline pixels. Therefore, the

proportion of discriminable outline pixels (PDOP) was

computed for each digit in each trial and was used in a set

of regressions which were identical with those used for

analysing NDOP.
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Summary -of results for outline model. The R s from

--all of the analyses which utilized the outline model are

shown in Table -9. Nearly all R s are very low, indicating a

major flaw- in this model of the background colors. The R s

for the two-factor models (which included N as a predictor)

are barely larger than the R2 obtained when a single-factor

regression using N alone is performed on ARS, i.e., .056.

The four-factor AEL*a*b* and five-factor AEL*u*v, and

AE L*a*b models achieved notably bette R 2s than any others

but even these do not compare favorably with those obtained

-previously with the lwo-degree model. Furthermore, it is

unclear why L*u*v* and L*a*b* should perform so differently

when four vs. five digits are displayed.

Part of the explanation for the apparent failure of

the outline model may be that it does not account for the

contributions of secondary pixels. For example, if all of

the pixels surrounding the numeral "one" have the same color

as the numeral, the outline model predicts minimum RS. Yet,

if the outline pixels are themselves outlined by h'.ghly

contrasting pixels, the numeral will nonetheless be legible

and RS may not be affected appreciably.

Another problem with the particular approaches which

were tested is that they assume a simple monotonically

increasing relationship between the independent and

dependent measures. Yet, it is easy to construct examples
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Table 9. R2 s for Outline Model Regressions

Two-factor Four-factor Five-factor

AE:
Tri .064 i062 .079

L*u*v* .058 .056 .224

L*a*b* .057 .118 .215

Wab .075 .070 .094

NDOP:

Tri .063 .010 .009

L*u*v* .060 .005 .008

L*a*b* .063 .010 .009

Wab .062 .013 .014

PDOP:

Tri .063 .009 .009

L*u*v* .060 .004 .008

L*a*b* .062 .009 .009

Wab .062 .013 .013
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in which a few nondiscriminable outline pixels, placed in

critical positions, might be expected to produce the

I greatest decrements in RS. Thus, although this is not a

fault inherent in the outline model, the analyses were

insensitive to effects associated with the positions of the

outline pixels.

Color Variation Metrics

Although it seemed plausible that additional work might

M improve the R2s for the outline model, it was also clear

1 this would require furthering its complexity, which was

W •already computationally imposing. Since the simpler two-

degree model had produced notably better R 2s, it appeared

unlikely that any reasonable version of the outline model

would prove superior. Therefore, it was abandoned and

efforts were made to develop a new refinement of the two-

degree model.

Passing consideration was given to the idea of

decreasing the size and/or changing the shape of the

averaging area. Taken to the smaller extreme this approach

would, of course, have reproduced the outline model. It is

possible that manipulation of the averaging area would have

uncovered a demonstrably better geometry. However, this

probably would have been very time-consuming and did not

seem apt to produce substantial increases in R2 . The fact

that the two-degree average produced very respectable
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results when compared with Lippert's (1983) R2s suggests

that it is already a near-optimal representation of global

color contrast. Therefore, it seemed probable that adding

new information regarding color contrast would be more

fruitful than attempting to "fine-tune" the two-degree

radius average.

It has already been pointed out that the primary

difference between the backgrounds used by Lippert (1983)

vs. those used in the present study is their uniformity.

Lippert's (1983) background pixels were monocolored whereas

the present study's were multicolored. One might expect

that increasing variability in the backgrounds' colors would

lead to decreasing RS and, therefore, a metric which

represents this variability should substantially improve the

regression equations' R2 s. The second major effort to

refine the two-degree model explored this possibility.

Definitions of variation metrics. Several metrics

which represent the variability of the background pixels'

colors were proposed. Because they were intended to serve

as parameters in a two-degree radius model, they all

restrict consideration to pixels within the two-degree

averaging area. The metrics are named and defined as

follows:

X: The mean distance in color space of the pixels from their

colorimetric center of mass, i.e., the average coordinates
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for -the two-degree radius.

S: The standard deviation of the distances.

S$2 The variance of the distances. (This is simply a second-

order version of S.)

CV: The coefficient of variation for the distances, i.e., S/X.

Unlike X, S, and S2, this is a unitless measure of

Variability.

CVR:-A new and unitless metric which was named "color variation

- .ratio". It is defined:

CVR = (U- i) / (T- 1),

where U is the number of uniq-ie colors among the pixels

within an arbitrary (two-degree, in the present case) radius

3• and T is the total number of pixels within the radius. If

all pixels have the same color, then U = 1 and CVR = 0. If

all pixels are uniquely colored, then U = T and CVR = 1.

The CVR is undefined for T = 1. A unique color is defined

as one having a unique bit setting. This is equivalent to

having unique tristimulus values, L*u*v* coordinates, etc.

and, thus, the CVR is independent of the color space used to

IN represent global color contrast. (For the other variation

metrics, it only makes sense to compute them within the

color space which is being used to represent global

contrast.) The definition does not assume that the colors

are unique perceptually.

Tests of variation metrics. The varition metrics were

evaluated initially by performing two sets of regressions.
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The first set consisted of a seven-factor regression for

each color space, using N, AE, and all five variation

metrics as parameters. Of course, the variation metrics are

intercorrelated, but the resulting R2s provided referents

against which simpler models could be compared. The second

set of regressions tested only one variation metric at a

time, combining each with N and AE in each color space. The

R2 s produced by the seven- and three-factor AE models are

shown in Table 10 along with the R2s from the original two-

factor AE models, for purposes of comparison.

It is evident in Table 10 that S and CVR are the

best single predictors. In all color spaces, they provided

larger R 2s than did the other variation metrics and their

averages across the color spaces are almost double the

average for the original two-factor AE models. The average

increase in R2 for S and CVR was approximately .247, which

is 73% of the average increase for the seven-factor models,

i.e., .338.

The next step in evaluating the variation metrics

consisted of computing the correlations between each metric

and distance in each color space. Correlations with AE are

shown in Table 11. Correlations with squared distance along

each axis are shown in Table 12.

Examination of Tables 11 and 12 reveals that CVR is
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Table 10. R2 S for Color Variation Metrics

Seven-factor AE regressions:

Tri L*u*v* L*a*b* Wab Avg. R2

T.587 .615 .585 .674 .615

Three-factor AE regressions:

Tri L*u*v* L*a*b* Wab Avg. R2

X .370 .320 .351 .430 .368

S .506 .484 .486 .601 .519

S2  .424 .420 .441 .495 .445

CV .261 .271 .284 .292 .277

I CVR .495 .543 .522 .557 .529

_ Avg. R2 : .411 .408 .417 .475 .428

Original two-factor AE regressions:

Tri L*u*v* L*a*b* Wab Avg. R2

.261 .271 .284 .292 .277
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Table 11. Correlationj Between Color Variation Metrics and

AE in Each Color Space

x s s2  CV CVR

Tri .409 .263 .361 .052 -. 095

L*u*v* -. 261 .279 .439 .490** .058

L*a*b* -. 519** .087 .172 .639** -. 134

Wab .465** .381 .468** .055 -. 016

Avg. Irl: .413 .252 .360 .309 .076

**statistically significant using alpha = .05.
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Table 12. Correlations Between Color Variation Metrics and

Squared Distances for Color Spaces' Axes

X S S2 CV CVR

((AX)2 .584** .466** .512** -. 053 .001

(AY)2 .617** .406 .415 -. 124 -. 061

2

S(AZ)2 .506** .113 .138 -. 157 -. 270

(AL*) 2  -. 602** -. 348 -. 211 .507** -. 400

(Au*)2 .170 .672** .814** .212 .375

(Av*) .151 .454** .447** .094 .332

(AL*) -. 688** -. 305 -. 238 .588** -. 400

(Aa*) .173 .446** .459** .052 .293

2(Ab*) .138 .519** .559** .155 .328

(AW)2 .586** .350 .356 -. 3.09 -. 079

(Aa) .252 .671** .812** .192 .349

2((Ab) .599** .496** .376 -. 160 .183

Avg. Irl: .422 .437 .445 .200 .256

a** statistically significant using alpha = .05.

57



clearly the least troublesome variation metric with regard

to covariance with HUD/background distance parameters. Its

average absolute correlation with AE is much smaller than

those of the other metrics and its average absolute

correlation with the squared distances is almost as small as

CV's, which is the poorest predictor in Table 10.

Furthermore, unlike the other metrics, none of CVR's

correlations are statistically significant. For these

correlations, the issue of statistical significance is

important because it is worthwhile to know whether the

covariance which is evident in the present sample exists in

the (infinite) population of potential stimuli. On this

basis, CVR is unquestionably the best metric because it is

least likely to covary with global color contrast parameters

in one's regression equations. The CVR is also the best

metric for purposes of the present analysis because it

combines superior predictive power with relatively low

covariance for the present experiment's HUDBACKSs.

Therefore, it was selected for inclusion with the original

two-degree model of color contrast, yielding the new "two-

degree model of color variation."

Two-degree Model of Color Variation

Three-factor AE regressions. The R 2s for the three-

factor AE models have already been presented but the

regressions involving CVR are shown in more detail in Table
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Table 13. Two-Degree Model of Color Variation:

- Three-Factor AE Regressions

Parameter Regression coefficient pR2

Intercept 3.126380 x 10 < .01 .495

N -2.745800 x 10- < .01

CVR -1.084280 x 10-3 < .01

AETri 6.218733 x 10- 6  < .01

Intercept 2.973990 x 10-3 < .01 .543

N -2.745800 x 10-4 < .01

CVR -1.116477 x 10-3 < .01

AEL~u*v* 5.867772 x 10-6 < .01

Intercept 2.927130 x 10-3 < .01 .522

N -2.745800 x 10-4 < .01

CVR -1.092970 x 10-3 < .01

AEL.ra*b* 6.902558 x 10-6 < .01

Intercept 3.079510 x 1 < .01 .557

N -2.745800 x 10-4 < .01

CVR -1.150330 x 10 < .01

AEWb 3.307664 x 10-5 < .0:.
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33. All parameters in all color spaLes were significant, p

< .01 in all cases, and the sign of CVR's slopes was

negative, as predicted. The covariance between CVR and AE

is evident in Table 13, wherein the estimate of CVR's slope

varies slightly across the color spaces. Also, comparison

with Table 2 shows that adding CVR to the regression

equations caused the intercepts and slopes for AE to shift a

bit.

Five-factor regressions. The next logicl step was

to test regression equations which included CVR and

permitted the color spaces' axes to be rescaled. These

regressions took essentially the same form as Equation 1 but

with CVR, as well as N, subtracted from the right-hand side.

The slope for CVR was estimated in advance via a two-factor

regression which used N and CVR as parameters.

The results for the five-factor regressions are

summarized in Table 14. The estimated slopes for Tri's and

Y and Z axes and L*a*b*'s b axis did not differ

significantly from zero, p > .10 in all cases, but all other

parameters were significant, p < .02 in all cases. This

appears to be a slight improvement over Table 3.

Comparisor' of the five-factor R 2s with their three-factor

counterparts showed no significant differences for Tri or

Wab, p > .18 in both cases, and showed the five-factor R 2s

for L*u*v* and L*a*b* to be significantly greater, p < .01
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Table 14. Two-Degree Model of Color Variation:

Five-Factor Regressions

Parameter Regres. on coefficient p R2

Intercept 1.180573 x 105 < .01 .469

N -2.745800 x 10-04 < .01

CVR -1.152040 x 10-03 < .01

(AX) 2  6.331391 x 10 10 < .01

(AY) 2  4.150579 x I0-II = .80

(AZ) 2  -2.523097 x 10- 10 = .10

Intercept 1.012723 x 10-05 < .01 .639

N -2.745800 x 10-04 < .01

-1.152040 x 10-03 < .01

( 2.) 9.274627 x 10-10 < .0i
(Au*) 2  1.936028 x 10-10 < .01

(AV*)2  7.927503 x 1011 = .02

Intercept 9.997982 x 10-06 < .01 .634

N -2.745800 x 10-0 < .01

CVR -1.152040 x 10-03 < .01

(AL*) 2  9.773232 x 10-10 < .01

(Aa*) 2  4.069501 x I0- 1 0  < .01
(Ab*) 8.710482 x o1-12  .86
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T-able -14 ohiti-hued~)-

Intercept 1.070769 x 10 < .01 .539

N 2.745800 x l0o < .01

CVR "1.152040 x 10- < .01

(AW)2 4.344408 x 1009 < .01

(Aa) 29.849166 x 10-09 < .01

(Ab) 2  2.047066 x 10-08 < .01

6
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STable 16. Two-Degree Model of Color Variation vs. Lippert (1983)

Models: Predicting Lippert's (1983) Resu-ts

Color space L model R2 P model R2 p

Tri 4F .597 3F- AE .289 < .01

SL*U*V* 4F .656 5F .362 < .01

SL*a*b* 4F .619 5F .320 < .01

Wab 2F- AE .425 3F- AE .405 .05

L = Lippert (1983)

P = Present study

S4F = Four-factor

5F = Five-factor

S 2F- AE = Two-factor AE

3F- AE = Three-factor AE
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- - L*a*b*, and Tri were significant, p < .01 in all cases, and

were in favor of a given study's models predicting that

study's results. The results for Wab were also essentially

the same as before. For predicting the present study's

results, either experiment's Wab coefficients served equally

well and, for predicting Lippert's (1983) results, the

comparison was barely significant. It is noteworthy that

the former outcome resulted from a remarkable improvement in

R2 which resulted from adding CVR to the Lippert (1983) Wab

model and which the other color spaces did not enjoy

equally. (Compare the Lippert (1983) R2 s in Tables 7 vs.

15.)

Comparison of the R2 s for the present study's models

in Tables 8 vs. 16 suggests that the new optimum models did

not predict the results from Lippert (1983) any better than

did the original optimum models. However, examination of

Tables 15 and 16 indicates that the new optimum models

predict the present study's results as well as the optimum

Lippert (1983) models predict Lippert's (1983) results.

Thus, it is unlikely that substantial improvements in these

R2s for the present study can be achiexred.

Nonlinear regressions. A final check was made to

assure that the coefficients for the five-factor models were

optimal. It was possible that the estimated intercepts and

slopes for the color spaces' axes had been biased by the
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S-subtraction of a covarying term (i.e., CVR) from the

dependent measure prior to the regressions. Recall that the

slope for CVR had been estimated independently of squared

distance along the axes, while the axes' slopes had been

estimated given the slope for CVR. Thus, it was desirable

to check the coefficients in a regression which would

estimate all parameters simultaneously.

The equations to which a fit was desired took a form

M similar to Equation 2, e.g.:

[x 0 + Xl(dL*)2 + x2 (du*)2 + x 3 (dv*) 2 ]I/2

+ x4N + x 5 CVR= RS (4)

where x5 is the regression coefficient for CVR. It has

already been pointed out that equations such as this cannot

be fitted uAinq linear regression methods. However,

solutions can sometimes be achieved using nonlinear search

techniques which perform least-squares minimization,

particularly if one has some general notion as to the

location of the solution. Although the coefficients in

Table 14 might not be optimal, it is likely that they are

close and, therefore, they provided suitable starting points

for searches in the color spaces.

The searches utilized the multivariate secant method,

known also as DUD or the method of false position, as

implemented in the Statistical Analysis System (SAS
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Institute, 1982). The multivariate secant method is similar

to the classical Gauss-Newton procedure but it estimates the

derivatives of the regression parameters from its own

sequence of iterations.

A set of searches was performed for each color space.

The first started at the location specified by the

coefficients in Table 14 while subsequent searches started

from slightly different locations. Convergence was achieved

in all cases without evidence of computational error or

difficulties. The optimized coefficients resulting from the

searches did not differ appreciably from those in Table 14

in any case nor did the R 2s improve notably (The average

increase in R2 was only .006.) Furthermore, the searches

perturbed the estimates of N's slope, which should have

remained invariant. Therefore, the coefficients in Table 14

were deemed satisfactory.

6
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DISCUSSION AND CONCLUSIONS

It is evident that color contrast metrics which

utilize Euclidean distance in color space can be related

meaningfully to human visual task performance. Although the

outline m-d.l was largely unsuccessful, all of the

* regressions for the other major models produced respectable

R 2 S.

The differences among the R 2s as a function of color

M2 space and model complexity are instructive with regard to

the relative practical merits of the color spaces which were

studied. The present study's AE regressions indicate that

none of the uniform color spaces, as they are defined

presently by the CIE 1976 formulations, provide any

substantial improvements over the 1931 CIE tristimulus space

in one's ability to predict performance as a function of

color distance. This finding is difficult to reconcile

3 completely with the results from the AE regressions on

Lippert's (1983) data. Perhaps the most reasonable

conclusion is that any benefits which are associated with

using the uniform color spaces in their present (CIE 1976)

form are situation-specific and, at best, do not appear to

Fbe especially great.

The present results also indicate that a simple linear

rescaling of the L*u*v* and L*a*b* axes yields substantial
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and equivalent improvements in therir predictive utility, but

does not benefit the 1931 CIE and Wab spaces. Here again,

however, the finding for 1931 CIE space does not agree

totally with that based on Lippert's (1983) data, although

Lippert achieved substantial improvement in preciction of

visual task performance by rescaling the L*u*v* axes.

The aforementioned results for L*u*v* and L*a*b*

contribute to a growing body of evidence (i.e., Costanza,

1981; Pointer, 1981) which suggests that these two spaces

are equally useful but are not perceptuall' uniform. For

both spaces, all rescaled-axis regressions which are

discussed herein yielded axis slopes which differed

considerably. The same argument can be made in the case of

Wab space, although the findings suggest that something

other than a linear rescaling will be required to produce

any improvement over the original transformation. For

L*u*v* and L*a*b*, however, it is clear that merely re-

weighting their axes should produce substantial and

consistent benefits. Furthermore, it appears that this

adjustment should render these two spaces superior to the

Wab and 1931 CIE spaces.

The present results also have interesting implications

regarding color selection for HUDs. The red, yellow-green,

and achromatic HUDs were intended to simulate chromaticities

which are available using contemporary HUD technology.
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Clearly, the red HUD yielded the best overall performance

while the other two yielded the worst. As mentioned

previously, though, the applicability of these findings is

dependent upon the representativeness of the color contrasts

which were presented. Appendices 3 - 6 are intended to

assist the reader in evaluating the stimuli which were used

in the present study.

Appendix 3 tabulates the backgrounds' colorimetric

characterizations, as used in the present analyses.

Appendix 4 shows the locations of the two-degree averages

and the five HUD chromaticities on the 1931 CIE chromaticity

diagram. The triangle in Appendix 4 which has the red,

green, and blue HUD chromaticities (which were each produced

o by a single gun) as its apices indicates the range of

chromaticities which the monitor was capable of producing.

Appendix 5 summarizes the characterizations of Renndorf

(1956) foi various natural and man-made objects, and

Appendix 6 shows the locations of these chromaticities on

the 1931 CIE chromaticity diagram.

Comparison of the chromaticity coordinates in these

tables and figures does not reveal any obvious and major

R4 differences. However, it is possible for luminance

contrasts to exist in operational environments which exceed

N those used in the present experiment. Furthermore, it is

possible that effects associated with retinal illuminance

71
Off



and ambient illumination mediate tho.se obtained in the

-present study. Finally, it is not certain -whether the

differences in RS which were obtained as a function of HUD

color exist or are meaningful in applied settings.

Therefore, although it seems likely that a red HUD is

optimal, this finding must be regarded as tentative.

It is interesting that the red and blue HUDs, which

yielded the best overall performance, can be seen in

Appendix 4 to lie farthest from the two-degree radius

averages. However, this observation must be tempered by the

realization that the 1931 CIE diagram is not perceptually

uniform. Also, it should be borne in mind that the points

which represent the backgrounds are averages and, hence, a

larger portion of the chromaticity diagram was sampled than

might be inferred from the plot.

Perhaps the most important result of the present

research is the finding that a relatively simple approach to

modelling spatially complex color contrasts accounted for

substantial portions of the sample variation. This has

great practical significance. The computation of

tristimulus values for a two-degree averaging area and

subsequent transformation to a uniform color space can be

accomplished quickly and easily, even without a computer or

digital image processor. As the color contrast model shows,

this alone may be expected to provide large R2s if the
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S.rescaled L*u*v* or L*a*b* spaces are used. Even better

results can be had from these two spaces if the CVR is also

computed. This is an extremely straightforward procedure if

the image is in digital form.

M

7
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APPENDIX 1

Average Photometric Measurements for HUD Colors

x y Y (cd/m )

Yellow-green .3757 .4918 39.01

Red .6088 .3429 40.01

Achromatic .3112 .3282 38.40

Blue .1535 .0693 42.02

Green .3038 .5625 39.59
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APPENDIX 2

Descriptions of Photographs Used as Backgrounds

1. A harbour, photographed from an elevated site approximately

Sone mile away. Water is light green, near-.y buildings brown,

gray, and tan with interspersed greenery, and large brown

mountain overlooking scene in background.

2. Cpen sea with horizon and pale blue sky with a few clouds

visible. Most of the water is dark blue with black ripples.

Shallow area contains light blue water.

3. Bare, cracked, light brown ground with gray and brown mountain

and light blue sky in background.

4. A concrete spillway in a wooded lake area with barren trees.

Water dark blue with white foam near shore and spillway.

5. A gray U.S. destroyer, side view, photographed such that its

length slightly exceeded the photograph's width. Water is

very dark blue. Sky is pale blue with a few clouds.

6. A flat two-lane country road, photographed head-on from an

N overpass. Two nearby automobiles visible. Lush green trees

on either side, yellow grass on enbankment, and grayish-blue
S~ asphalt.

7. View from overpass of same road in opposite direction. Road

climbs uphill and is white with distant automobile visible.

Green trees and grass on either side.

8. False-colored Landsat photograph of city and nearby mountain

range. Mostly reds and blues with some greens, whites,
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and browns.

9. Aerial photograph of a lake with Pacific ocean nearby. Ground

is dark green, brown, and gray, lake is gray, ocean is bluish-

gray, anrý scattered clouds just below aircraft are white.

10. Aerial photograph with heavily wooded terrain barely visible

through blue haze. Two large white clouds at top and on

right.
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APPENDIX 3

Characterization of Two-Degree Averages for Backgrounds

B Photo x y Y (cd/m ) CVR DW Purity

1 1 .3804 .3613 1.331 .7013 584 .24

2 1 .3990 .3452 1.673 .7583 596 .25

3 2 .2773 .2565 1.469 .5235 466 .26

4 2 .2385 .2939 12.585 .4816 487 .34

5 3 .3934 .3759 19.634 .9357 580 .36

S6 3 .3686 .3281 5.649 .8690 620 .11

7 4 .3391 .3389 27.587 .8929 582 .05

8 4 .2914 .2869 20.365 .7257 475 .18

9 5 .3163 .3316 34.097 .6216 495 .05

10 5 .3069 .3052 27.371 .7076 470 .10

11 6 .3416 .3489 110.290 .5217 571 .09

12 6 .4174 .4041 70.011 .9734 580 .46

13 7 .3042 .3606 54.893 .9547 507 .09

"14 7 .2881 .4214 10.322 .9582 524 .18

15 8 .4364 .3634 67.477 .9852 593 .41

16 8 .3542 .3407 94.166 .9861 585 .10

31 9 .34S2 .2972 1.056 .6150 -519 .16

18 9 .2997 .2857 17.698 8650 469 .16

19 10 .3787 .3186 0.863 .2730 -495 .15

20 !0 .3013 .3049 53.809 .3459 478 .12

B = Background

DW = Dominant wavelength
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APPENDIX 4

Chromaticity Plot for Background Images and HUD Colors
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APPENDIX 5

U Colors in the Natural Environment

Dominant

x y Y(%) wavelength Purity

Inland water .269 .289 5 481 .31

Snow .340 .346 77 481 .03

Ice .351 .354 75 579 .02

Limestone clay .377 .376 63 579 .18

Bare mountaintops .399 .387 24 582 .29

Dry sand .399 .387 24 582 .29

"Wet clay soil .382 .373 9 583 .18

Bare dry ground .382 .373 9 583 .18

Black earth, sand, .377 .369 3 583 .15

loam

Coniferous forests, .381 .396 3 574 .25

winter

Coniferous forests, .397 .410 8 576 .36

A ~ summer

Deciduous forests, .451 .399 15 586 .50

fall

Deciduous forests, .394 .432 10 572 .43

summer

Lush grass .394 .432 10 572 .43

Dry meadow grass .397 .410 8 576 .36
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Appxendi 5 (continued)

Ripe field crops .451 .399 15 586 .50

Earth roads .377 .369 3 583 .15

Blacktop roads .382 .373 9 583 .18
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A APRENDIX S

Chromatic~ity Plot -of- Colorsý in thee 14tý Eanw-izronxnent
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